Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559169

RESUMEN

Alcohol use disorder is marked by disrupted behavioral and emotional states which persist into abstinence. The enduring synaptic alterations that remain despite the absence of alcohol are of interest for interventions to prevent relapse. Here, 28 male rhesus macaques underwent over 20 months of alcohol drinking interspersed with three 30-day forced abstinence periods. After the last abstinence period, we paired direct sub-second dopamine monitoring via ex vivo voltammetry in nucleus accumbens slices with RNA-sequencing of the ventral tegmental area. We found persistent augmentation of dopamine transporter function, kappa opioid receptor sensitivity, and dynorphin release - all inhibitory regulators which act to decrease extracellular dopamine. Surprisingly, though transcript expression was not altered, the relationship between gene expression and functional readouts of these encoded proteins was highly dynamic and altered by drinking history. These results outline the long-lasting synaptic impact of alcohol use and suggest that assessment of transcript-function relationships is critical for the rational design of precision therapeutics.

2.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370660

RESUMEN

The role of the dynorphin/kappa opioid receptor (KOR) system in dopamine (DA) regulation has been extensively investigated. KOR activation reduces extracellular DA concentrations and increases DA transporter (DAT) activity and trafficking to the membrane. To explore KOR influences on real-time DA fluctuations, we used the photosensor dLight1.2 with fiber photometry in the nucleus accumbens (NAc) core of freely moving male and female C57BL/6 mice. First, we established that the rise and fall of spontaneous DA signals were due to DA release and reuptake, respectively. Then mice were systemically administered the KOR agonist U50,488H (U50), with or without pretreatment with the KOR antagonist aticaprant (ATIC). U50 reduced both the amplitude and width of spontaneous signals in males, but only reduced width in females. Further, the slope of the correlation between amplitude and width was increased in both sexes, suggesting that DA uptake rates were increased. U50 also reduced the frequency of signals in both males and females. All effects of KOR activation were stronger in males. Overall, KORs exerted significant inhibitory control over spontaneous DA signaling, acting through at least three mechanisms - inhibiting DA release, promoting DAT-mediated uptake, and reducing the frequency of signals.

3.
Drug Alcohol Depend ; 251: 110960, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703771

RESUMEN

BACKGROUND: Preclinical models of cocaine use disorder (CUD) have not yielded any FDA-approved pharmacotherapies, potentially due to a focus on cocaine use in isolation, which may not fully translate to real-world drug taking patterns. Cocaine and nicotine are commonly used together, and clinical research suggests that nicotine may increase the potency and reinforcing strength of cocaine. In this study, we sought to determine whether and how the addition of nicotine would alter ongoing intravenous cocaine self-administration and motivation to take cocaine in rats. METHODS: Male Sprague-Dawley rats self-administered cocaine alone on a long access, Fixed Ratio one (FR1) schedule, and then switched to a combination of cocaine and nicotine. Finally, rats responded on a Progressive Ratio (PR) schedule for several doses of cocaine alone and in combination with a single dose of nicotine. RESULTS: Under long access conditions, rats co-self-administering cocaine and nicotine responded less and with decreased response rates than for cocaine alone and did not escalate responding. However, under PR conditions that test motivation to take drugs, the dose response curve for the combination was shifted upwards relative to cocaine alone. CONCLUSIONS: Together, these results suggest that nicotine may enhance the reinforcing strength of cocaine, increasing PR responding for cocaine across the dose response curve.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Trastornos Relacionados con Sustancias , Ratas , Masculino , Animales , Nicotina , Ratas Sprague-Dawley , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Autoadministración/métodos , Relación Dosis-Respuesta a Droga , Esquema de Refuerzo , Condicionamiento Operante
4.
Nat Med ; 29(8): 2030-2040, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37580533

RESUMEN

Alcohol use disorder (AUD) exacts enormous personal, social and economic costs globally. Return to alcohol use in treatment-seeking patients with AUD is common, engendered by a cycle of repeated abstinence-relapse episodes even with use of currently available pharmacotherapies. Repeated ethanol use induces dopaminergic signaling neuroadaptations in ventral tegmental area (VTA) neurons of the mesolimbic reward pathway, and sustained dysfunction of reward circuitry is associated with return to drinking behavior. We tested this hypothesis by infusing adeno-associated virus serotype 2 vector encoding human glial-derived neurotrophic factor (AAV2-hGDNF), a growth factor that enhances dopaminergic neuron function, into the VTA of four male rhesus monkeys, with another four receiving vehicle, following induction of chronic alcohol drinking. GDNF expression ablated the return to alcohol drinking behavior over a 12-month period of repeated abstinence-alcohol reintroduction challenges. This behavioral change was accompanied by neurophysiological modulations to dopamine signaling in the nucleus accumbens that countered the hypodopaminergic signaling state associated with chronic alcohol use, indicative of a therapeutic modulation of limbic circuits countering the effects of alcohol. These preclinical findings suggest gene therapy targeting relapse prevention may be a potential therapeutic strategy for AUD.


Asunto(s)
Alcoholismo , Animales , Masculino , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/terapia , Alcoholismo/tratamiento farmacológico , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Etanol/metabolismo , Etanol/farmacología , Etanol/uso terapéutico , Terapia Genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Núcleo Accumbens/metabolismo , Primates/genética , Área Tegmental Ventral/metabolismo
5.
eNeuro ; 10(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37193602

RESUMEN

Mesolimbic nicotinic acetylcholine receptor (nAChRs) activation is necessary for nicotine reinforcement behavior, but it is unknown whether selective activation of nAChRs in the dopamine (DA) reward pathway is sufficient to support nicotine reinforcement. In this study, we tested the hypothesis that activation of ß2-containing (ß2*) nAChRs on VTA neurons is sufficient for intravenous nicotine self-administration (SA). We expressed ß2 nAChR subunits with enhanced sensitivity to nicotine (referred to as ß2Leu9'Ser) in the VTA of male Sprague Dawley (SD) rats, enabling very low concentrations of nicotine to selectively activate ß2* nAChRs on transduced neurons. Rats expressing ß2Leu9'Ser subunits acquired nicotine SA at 1.5 µg/kg/infusion, a dose too low to support acquisition in control rats. Saline substitution extinguished responding for 1.5 µg/kg/inf, verifying that this dose was reinforcing. ß2Leu9'Ser nAChRs also supported acquisition at the typical training dose in rats (30 µg/kg/inf) and reducing the dose to 1.5 µg/kg/inf caused a significant increase in the rate of nicotine SA. Viral expression of ß2Leu9'Ser subunits only in VTA DA neurons (via TH-Cre rats) also enabled acquisition of nicotine SA at 1.5 µg/kg/inf, and saline substitution significantly attenuated responding. Next, we examined electrically-evoked DA release in slices from ß2Leu9'Ser rats with a history of nicotine SA. Single-pulse evoked DA release and DA uptake rate were reduced in ß2Leu9'Ser NAc slices, but relative increases in DA following a train of stimuli were preserved. These results are the first to report that ß2* nAChR activation on VTA neurons is sufficient for nicotine reinforcement in rats.


Asunto(s)
Nicotina , Receptores Nicotínicos , Ratas , Masculino , Animales , Nicotina/farmacología , Nicotina/metabolismo , Agonistas Nicotínicos/farmacología , Área Tegmental Ventral/metabolismo , Ratas Sprague-Dawley , Receptores Nicotínicos/metabolismo , Neuronas Dopaminérgicas/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768403

RESUMEN

The serotonin and kappa opioid receptor (KOR) systems are strongly implicated in disorders of negative affect, such as anxiety and depression. KORs expressed on axon terminals inhibit the release of neurotransmitters, including serotonin. The substantia nigra pars reticulata (SNr) is involved in regulating affective behaviors. It receives the densest serotonergic innervation in the brain and has high KOR expression; however, the influence of KORs on serotonin transmission in this region is yet to be explored. Here, we used ex vivo fast-scan cyclic voltammetry (FSCV) to investigate the effects of a KOR agonist, U50, 488 (U50), and a selective serotonin reuptake inhibitor, escitalopram, on serotonin release and reuptake in the SNr. U50 alone reduced serotonin release and uptake, and escitalopram alone augmented serotonin release and slowed reuptake, while pretreatment with U50 blunted both the release and uptake effects of escitalopram. Here, we show that the KOR influences serotonin signaling in the SNr in multiple ways and short-term activation of the KOR alters serotonin responses to escitalopram. These interactions between KORs and serotonin may contribute to the complexity in the responses to treatments for disorders of negative affect. Ultimately, the KOR system may prove to be a promising pharmacological target, alongside traditional antidepressant treatments.


Asunto(s)
Porción Reticular de la Sustancia Negra , Receptores Opioides kappa , Ratones , Animales , Receptores Opioides kappa/metabolismo , Serotonina/metabolismo , Porción Reticular de la Sustancia Negra/metabolismo , Escitalopram , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sustancia Negra/metabolismo
7.
IBRO Neurosci Rep ; 14: 129-137, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36748012

RESUMEN

Prior studies examining the effects of cocaine on the dynorphin/kappa opioid receptor (Dyn/KOR) system primarily focus on non-contingent cocaine exposure, but the effects of self-administration, which more closely reflects human drug-taking behaviors, are not well studied. In this study we characterized the effects of escalated intravenous cocaine self-administration on the functional state of the Dyn/KOR system and its interaction with mesolimbic dopamine signaling. Rats self-administered cocaine in an extended access, limited intake cocaine procedure, in which animals obtained 40 infusions per day (1.5 mg/kg/inf) for 5 consecutive days to ensure comparable consumption levels. Following single day tests of cue reactivity and progressive ratio responding, quantitative real-time polymerase chain reaction was used to measure levels of Oprk and Pdyn transcripts in the ventral tegmental area and nucleus accumbens. Additionally, after self-administration, ex vivo fast-scan cyclic voltammetry in the NAc was used to examine the ability of the KOR agonist U50,488 to inhibit dopamine release. We found that KOR-induced inhibition of dopamine release was enhanced in animals that self-administered cocaine compared to controls, suggesting upregulated Dyn/KOR activity after cocaine self-administration. Furthermore, expression levels of Pdyn in the nucleus accumbens and ventral tegmental area, and Oprk in the nucleus accumbens, were elevated in cocaine animals compared to controls. Additionally, Pdyn expression in the nucleus accumbens was negatively correlated with progressive ratio breakpoints, a measure of motivation to self-administer cocaine. Overall, these data suggest that cocaine self-administration elevates KOR/Dyn system activity in the mesolimbic dopamine pathway.

8.
Alcohol ; 100: 41-56, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181404

RESUMEN

Alcohol use disorder (AUD) is frequently comorbid with mood disorders, and these co-occurring neuropsychiatric disorders contribute to the development and maintenance of alcohol dependence and relapse. In preclinical models, mice chronically exposed to alcohol display anxiety-like and depressive-like behaviors during acute withdrawal and protracted abstinence. However, in total, results from studies using voluntary alcohol-drinking paradigms show variable behavioral outcomes in assays measuring negative affective behaviors. Thus, the main objective of this review is to summarize the literature on the variability of negative affective behaviors in mice after chronic alcohol exposure. We compare the behavioral phenotypes that emerge during abstinence across different exposure models, including models of alcohol and stress interactions. The complicated outcomes from these studies highlight the difficulties of assessing negative affective behaviors in mouse models designed for the study of AUD. We discuss new behavioral assays, comprehensive platforms, and unbiased machine-learning algorithms as promising approaches to better understand the interaction between alcohol and negative affect in mice. New data-driven approaches in the understanding of mouse behavior hold promise for improving the identification of mechanisms, cell subtypes, and neurocircuits that mediate negative affect. In turn, improving our understanding of the neurobehavioral basis of alcohol-associated negative affect will provide a platform to test hypotheses in mouse models that aim to improve the development of more effective strategies for treating individuals with AUD and co-occurring mood disorders.


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo , Afecto , Abstinencia de Alcohol , Consumo de Bebidas Alcohólicas/psicología , Alcoholismo/psicología , Animales , Ansiedad/psicología , Trastornos de Ansiedad/psicología , Etanol , Ratones
9.
Neuropsychopharmacology ; 46(10): 1724-1733, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34040157

RESUMEN

Increasing evidence suggests that females are more vulnerable to the harmful effects of drugs of abuse, including opioids. Additionally, rates of heroin-related deaths substantially increased in females from 1999 to 2017 [1], underscoring the need to evaluate sex differences in heroin vulnerability. Moreover, the neurobiological substrates underlying sexually dimorphic responding to heroin are not fully defined. Thus, we evaluated male and female Long Evans rats on acquisition, dose-responsiveness, and seeking for heroin self-administration (SA) as well as using a long access model to assess escalation of intake at low and high doses of heroin, 0.025 and 0.1 mg/kg/inf, respectively. We paired this with ex vivo fast-scan cyclic voltammetry (FSCV) in the medial nucleus accumbens (NAc) shell and quantification of mu-opioid receptor (MOR) protein in the ventral tegmental area (VTA) and NAc. While males and females had similar heroin SA acquisition rates, females displayed increased responding and intake across doses, seeking for heroin, and escalation on long access. However, we found that males and females had similar expression levels of MORs in the VTA and NAc, regardless of heroin exposure. FSCV results revealed that heroin exposure did not change single-pulse elicited dopamine release, but caused an increase in dopamine transporter activity in both males and females compared to their naïve counterparts. Phasic-like stimulations elicited robust increases in dopamine release in heroin-exposed females compared to heroin-naïve females, with no differences seen in males. Together, our results suggest that differential adaptations of dopamine terminals may underlie the increased heroin SA behaviors seen in females.


Asunto(s)
Dopamina , Heroína , Animales , Femenino , Masculino , Núcleo Accumbens , Ratas , Ratas Long-Evans , Autoadministración
10.
Eur J Neurosci ; 52(11): 4546-4562, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32725894

RESUMEN

Regional alterations in kinetics of catecholamine uptake are due in part to variations in clearance mechanisms. The rate of clearance is a critical determinant of the strength of catecholamine signaling. Catecholamine transmission in the nucleus accumbens core (NAcc) and basolateral amygdala (BLA) is of particular interest due to involvement of these regions in cognition and motivation. Previous work has shown that catecholamine clearance in the NAcc is largely mediated by the dopamine transporter (DAT), but clearance in the BLA is less DAT-dependent. A growing body of literature suggests that organic cation transporter 3 (OCT3) also contributes to catecholamine clearance in both regions. Consistent with different clearance mechanisms between regions, catecholamine clearance is more rapid in the NAcc than in the BLA, though mechanisms underlying this have not been resolved. We compared the expression of DAT and OCT3 and their contributions to catecholamine clearance in the NAcc and BLA. We found DAT protein levels were ~ 4-fold higher in the NAcc than in the BLA, while OCT3 protein expression was similar between the two regions. Immunofluorescent labeling of the two transporters in brain sections confirmed these findings. Ex vivo voltammetry demonstrated that the magnitude of catecholamine release was greater, and the clearance rate was faster in the NAcc than in the BLA. Additionally, catecholamine clearance in the BLA was more sensitive to the OCT3 inhibitor corticosterone, while clearance in the NAcc was more cocaine sensitive. These distinctions in catecholamine clearance may underlie differential effects of catecholamines on behavioral outputs mediated by these regions.


Asunto(s)
Complejo Nuclear Basolateral , Núcleo Accumbens , Complejo Nuclear Basolateral/metabolismo , Catecolaminas , Cationes , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Núcleo Accumbens/metabolismo
11.
Handb Exp Pharmacol ; 248: 213-238, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29675581

RESUMEN

Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.


Asunto(s)
Alcoholismo/fisiopatología , Dopamina , Etanol/farmacología , Consumo de Bebidas Alcohólicas , Animales , Humanos , Ratones , Ratas
12.
Bio Protoc ; 8(19): e2473, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34532508

RESUMEN

Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that allows sub-second detection of oxidizable chemical species, including monoamine neurotransmitters such as dopamine, norepinephrine, and serotonin. This technique has been used to record the physiological dynamics of these neurotransmitters in brain tissue, including their rates of release and reuptake as well as the activity of neuromodulators that regulate such processes. This protocol will focus on the use of ex vivo FSCV for the detection of dopamine within the nucleus accumbens in slices obtained from rodents. We have included all necessary materials, reagents, recipes, procedures, and analyses in order to successfully perform this technique in the laboratory setting. Additionally, we have also included cautionary points that we believe will be helpful for those who are novices in the field.

13.
Int Rev Neurobiol ; 136: 53-88, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29056156

RESUMEN

The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic.


Asunto(s)
Alcoholismo/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Dopamina/metabolismo , Dinorfinas/metabolismo , Adicción a la Comida/metabolismo , Receptores Opioides kappa/metabolismo , Transducción de Señal/fisiología , Animales
14.
Addict Biol ; 22(2): 275-290, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26549202

RESUMEN

N-Methyl-d-aspartate receptors (NMDARs) are major targets of both acute and chronic alcohol, as well as regulators of plasticity in a number of brain regions. Aberrant plasticity may contribute to the treatment resistance and high relapse rates observed in alcoholics. Recent work suggests that chronic alcohol treatment preferentially modulates both the expression and subcellular localization of NMDARs containing the GluN2B subunit. Signaling through synaptic and extrasynaptic GluN2B-NMDARs has already been implicated in the pathophysiology of various other neurological disorders. NMDARs interact with a large number of proteins at the glutamate synapse, and a better understanding of how alcohol modulates this proteome is needed. We employed a discovery-based proteomic approach in subcellular fractions of hippocampal tissue from chronic intermittent alcohol (CIE)-exposed C57Bl/6J mice to gain insight into alcohol-induced changes in GluN2B signaling complexes. Protein enrichment analyses revealed changes in the association of post-synaptic proteins, including scaffolding, glutamate receptor and PDZ-domain binding proteins with GluN2B. In particular, GluN2B interaction with metabotropic glutamate (mGlu)1/5 receptor-dependent long-term depression (LTD)-associated proteins such as Arc and Homer 1 was increased, while GluA2 was decreased. Accordingly, we found a lack of mGlu1/5 -induced LTD while α1 -adrenergic receptor-induced LTD remained intact in hippocampal CA1 following CIE. These data suggest that CIE specifically disrupts mGlu1/5 -LTD, representing a possible connection between NMDAR and mGlu receptor signaling. These studies not only demonstrate a new way in which alcohol can modulate plasticity in the hippocampus but also emphasize the utility of this discovery-based proteomic approach to generate new hypotheses regarding alcohol-related mechanisms.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Hipocampo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Proteínas del Citoesqueleto/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Etanol/administración & dosificación , Hipocampo/metabolismo , Proteínas de Andamiaje Homer/efectos de los fármacos , Proteínas de Andamiaje Homer/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
15.
Neuropsychopharmacology ; 41(8): 2062-71, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26751284

RESUMEN

Although alcoholism and depression are highly comorbid, treatment options that take this into account are lacking, and mouse models of alcohol (ethanol (EtOH)) intake-induced depressive-like behavior have not been well established. Recent studies utilizing contingent EtOH administration through prolonged two-bottle choice access have demonstrated depression-like behavior following EtOH abstinence in singly housed female C57BL/6J mice. In the present study, we found that depression-like behavior in the forced swim test (FST) is revealed only after a protracted (2 weeks), but not acute (24 h), abstinence period. No effect on anxiety-like behavior in the EPM was observed. Further, we found that, once established, the affective disturbance is long-lasting, as we observed significantly enhanced latencies to approach food even 35 days after ethanol withdrawal in the novelty-suppressed feeding test (NSFT). We were able to reverse affective disturbances measured in the NSFT following EtOH abstinence utilizing the N-methyl D-aspartate receptor (NMDAR) antagonist and antidepressant ketamine but not memantine, another NMDAR antagonist. Pretreatment with the monoacylglycerol (MAG) lipase inhibitor JZL-184 also reduced affective disturbances in the NSFT in ethanol withdrawn mice, and this effect was prevented by co-administration of the CB1 inverse agonist rimonabant. Endocannabinoid levels were decreased within the BLA during abstinence compared with during drinking. Finally, we demonstrate that the depressive behaviors observed do not require a sucrose fade and that this drinking paradigm may favor the development of habit-like EtOH consumption. These data could set the stage for developing novel treatment approaches for alcohol-withdrawal-induced mood and anxiety disorders.


Asunto(s)
Consumo de Bebidas Alcohólicas , Benzodioxoles/administración & dosificación , Depresión/inducido químicamente , Etanol/administración & dosificación , Ketamina/administración & dosificación , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperidinas/administración & dosificación , Afecto/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Depresión/prevención & control , Endocannabinoides/metabolismo , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Femenino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA